Unramified Representations of Reductive Groups over Finite Rings
نویسنده
چکیده
Lusztig has given a construction of certain representations of reductive groups over finite local principal ideal rings of characteristic p, extending the construction of Deligne and Lusztig of representations of reductive groups over finite fields. We generalize Lusztig’s results to reductive groups over arbitrary finite local rings. This generalization uses the Greenberg functor and the theory of group schemes over Artinian local rings.
منابع مشابه
Representations of Reductive Groups over Finite Rings
In this paper we construct a family of irreducible representations of a Chevalley group over a finite ring R of truncated power series over a field Fq . This is done by a cohomological method extending that of Deligne and the author in the case R = Fq .
متن کاملDeligne–lusztig Constructions for Division Algebras and the Local Langlands Correspondence, Ii
In 1979, Lusztig proposed a cohomological construction of supercuspidal representations of reductive p-adic groups, analogous to Deligne–Lusztig theory for finite reductive groups. In this paper we establish a new instance of Lusztig’s program. Precisely, let X be the Deligne–Lusztig (ind-pro-)scheme associated to a division algebra D over a non-Archimedean local field K of positive characteris...
متن کاملFactorization of unitary representations of adele groups
One disclaimer is necessary: while in principle this factorization result makes it clear that representation theory is relevant to study of automorphic forms and L-functions, in practice there are other things necessary. In effect, one needs to know that the representation theory of reductive linear p-adic groups is tractable, so that conversion of other issues into representation theory is a c...
متن کاملGlobally analytic $p$-adic representations of the pro--$p$--Iwahori subgroup of $GL(2)$ and base change, I : Iwasawa algebras and a base change map
This paper extends to the pro-$p$ Iwahori subgroup of $GL(2)$ over an unramified finite extension of $mathbb{Q}_p$ the presentation of the Iwasawa algebra obtained earlier by the author for the congruence subgroup of level one of $SL(2, mathbb{Z}_p)$. It then describes a natural base change map between the Iwasawa algebras or more correctly, as it turns out, between the global distribut...
متن کاملDeligne-lusztig Constructions for Division Algebras and the Local Langlands Correspondence
Let K be a local non-Archimedean field of positive characteristic and let L be the degree-n unramified extension of K. Let θ be a smooth character of L× such that for each nontrivial γ ∈ Gal(L/K), θ and θ/θ have the same level. Via the local Langlands and Jacquet-Langlands correspondences, θ corresponds to an irreducible representation ρθ of D×, where D is the central division algebra over K wi...
متن کامل